题目内容
11.已知2sinα+cosα=0,求$\frac{sinα-3cosα}{2sinα+5cosα}$的值.分析 由已知式子可得tanα的值,变形要求的式子可得$\frac{sinα-3cosα}{2sinα+5cosα}$=$\frac{tanα-3}{2tanα+5}$,代值计算可得.
解答 解:∵2sinα+cosα=0,∴tanα=$\frac{sinα}{cosα}$=-$\frac{1}{2}$,
∴$\frac{sinα-3cosα}{2sinα+5cosα}$=$\frac{tanα-3}{2tanα+5}$=$\frac{-\frac{1}{2}-3}{2×(-\frac{1}{2})+5}$=-$\frac{7}{8}$
点评 本题考查同角三角函数函数基本关系,弦化切是解决问题的关键,属基础题.
练习册系列答案
相关题目
2.若函数$f(x)=sin(ωx+\frac{π}{4})(0<ω<2)$的图象关于直线$x=\frac{π}{6}$对称,则f(x)的最小正周期为( )
| A. | $\frac{2π}{3}$ | B. | $\frac{4π}{3}$ | C. | 2π | D. | $\frac{8π}{3}$ |
6.下列计算错误的是( )
| A. | ${∫}_{-π}^{π}$sinxdx=0 | B. | ${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=2${∫}_{0}^{\frac{π}{2}}$cosxdx | ||
| C. | ${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx=2π | D. | ${∫}_{1}^{2}$$\frac{1}{x}$dx=$\frac{3}{4}$ |
20.若集合M={x|x2≤1},N={-2,0,1},则M∩N=( )
| A. | {-2,0,1} | B. | {0,1} | C. | {-2,0} | D. | ∅ |