题目内容
13.已知复数$z=\frac{{1+2{i^3}}}{2+i}$(i为虚数单位),则z在复平面内所对应点的坐标为( )| A. | (1,0) | B. | (-1,0) | C. | (0,1) | D. | (0,-1) |
分析 利用复数定义所在、几何意义即可得出.
解答 解:∵复数$z=\frac{{1+2{i^3}}}{2+i}$=$\frac{1-2i}{2+i}$=$\frac{(1-2i)(2-i)}{(2+i)(2-i)}$=$\frac{-5i}{5}$=-i.
故其对应的点的坐标为(0,-1),
故选:D.
点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
13.已知两集合$A=\left\{{x\left|{{x^2}+x-2≤0}\right.}\right\},B=\left\{{x\left|{\frac{2x-1}{x}>0}\right.}\right\}$,则A∩B=( )
| A. | [-2,0) | B. | $({\frac{1}{2},1}]$ | C. | $[{-2,0})∪({\frac{1}{2},1}]$ | D. | [1,+∞) |
8.给出命题p:若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β;命题q:向量$\overrightarrow{a}$=(-2,-1),$\overrightarrow{b}$=(λ,1)的夹角为钝角的充要条件为λ∈(-$\frac{1}{2}$,+∞).关于以上两个命题,下列结论中正确的是( )
| A. | 命题“p∨q”为假 | B. | 命题“p∧q”为真 | C. | 命题“p∨¬q”为假 | D. | 命题“p∧¬q”为真 |
18.等差数列{an}的前n项和为Sn,若$\frac{{S}_{n}}{{a}_{n}}$=$\frac{n+1}{2}$,则下列结论中正确的是( )
| A. | $\frac{{a}_{2}}{{a}_{3}}$=2 | B. | $\frac{{a}_{2}}{{a}_{3}}$=$\frac{3}{2}$ | C. | $\frac{{a}_{2}}{{a}_{3}}$=$\frac{2}{3}$ | D. | $\frac{{a}_{2}}{{a}_{3}}$=$\frac{1}{3}$ |
5.方程ex=5-x的根所在的大致区间为( )
| A. | ($\frac{1}{2}$,1) | B. | (1,$\frac{3}{2}$) | C. | ($\frac{3}{2}$,2) | D. | (2,$\frac{5}{2}$) |