题目内容
设二次方程anx2-an+1x+1=0(n∈N)有两根α和β,且满足6α-2αβ+6β=3.
(1)试用an表示an+1;
(2)求证:数列{an-
}是等比数列;
(3)当a1=
时,求数列{an}的通项公式.
(1)试用an表示an+1;
(2)求证:数列{an-
| 2 |
| 3 |
(3)当a1=
| 7 |
| 6 |
(1)由韦达定理得:α+β=
,α•β=
,
由6α-2αβ+6β=3得6•
-
=3,
故an+1=
an+
.
(2)证明:因为an+1-
=
an-
=
(an-
),
所以
=
,
故数列{an-
}是公比为
的等比数列;
(3)当a1=
时,数列{an-
}的首项a1-
=
-
=
,
故an-
=
•(
)n-1=(
)n,
于是.an=(
)n+
.
| an+1 |
| an |
| 1 |
| an |
由6α-2αβ+6β=3得6•
| an+1 |
| an |
| 2 |
| an |
故an+1=
| 1 |
| 2 |
| 1 |
| 3. |
(2)证明:因为an+1-
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
所以
an+1-
| ||
an-
|
| 1 |
| 2 |
故数列{an-
| 2 |
| 3 |
| 1 |
| 2 |
(3)当a1=
| 7 |
| 6 |
| 2 |
| 3 |
| 2 |
| 3 |
| 7 |
| 6 |
| 2 |
| 3 |
| 1 |
| 2 |
故an-
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
于是.an=(
| 1 |
| 2 |
| 2 |
| 3 |
练习册系列答案
相关题目