题目内容
设二次方程anx2-an+1x+1=0,n∈N+有两根α和β,且满足6α-2αβ+6β=3,a1=1
(1)试用an表示an+1;
(2)证明{an-
}是等比数列;
(3)设cn=n•(an-
),n∈N+,Tn为{cn}的前n项和,证明Tn<2,(n∈N*).
(1)试用an表示an+1;
(2)证明{an-
| 2 |
| 3 |
(3)设cn=n•(an-
| 2 |
| 3 |
分析:(1)由题设知6α-2αβ+6β=3,故即6•
-2•
=3,由此能用an表示an+1.
(2)由an+1=
an+
,n∈N+.知an+1-
=
an+
-
=
(an-
),由此能够证明{an-
}是等比数列.
(3)由{an-
}是以
为首项,以
为公比的等比数列,知an-
=
•(
)n-1,推出cn,由此利用错位相减法能够证明Tn<2.
| an+1 |
| an |
| 1 |
| an |
(2)由an+1=
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 2 |
| 3 |
(3)由{an-
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
解答:解:(1)∵二次方程anx2-an+1x+1=0,n∈N+有两根α和β,
且满足6α-2αβ+6β=3,a1=1,
∴6α-2αβ+6β=3,
即6•
-2•
=3,
∴an+1=
an+
,n∈N+.
(2)∵an+1=
an+
,n∈N+.
∴an+1-
=
an+
-
=
(an-
),
且a1-
=
,
∴{an-
}是以
为首项,以
为公比的等比数列.
(3)∵{an-
}是以
为首项,以
为公比的等比数列,
∴an-
=
•(
)n-1,cn=n•
•(
)n-1,
∴Tn=
[1+2•(
)1+3•(
)2+…+(n-1)•(
)n-1],
Tn=
[1•(
) +2•(
)2+3•(
)3+…+(n-1)•(
)n-1]+
n•(
)n,
两式相减,得
Tn=
[1+
+(
)2+(
)3+…+(
)n-1]-
n•(
)n
=
-
n•(
)n
Tn=
-
•
-
n•
,
整理,得Tn<2.
且满足6α-2αβ+6β=3,a1=1,
∴6α-2αβ+6β=3,
即6•
| an+1 |
| an |
| 1 |
| an |
∴an+1=
| 1 |
| 2 |
| 1 |
| 3 |
(2)∵an+1=
| 1 |
| 2 |
| 1 |
| 3 |
∴an+1-
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
且a1-
| 2 |
| 3 |
| 1 |
| 3 |
∴{an-
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)∵{an-
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
∴an-
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
∴Tn=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
两式相减,得
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
=
| ||||
1-
|
| 1 |
| 3 |
| 1 |
| 2 |
Tn=
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2n |
| 1 |
| 3 |
| 1 |
| 2n+1 |
整理,得Tn<2.
点评:本题考查数列的性质的综合运用,考查不等式的证明,综合性强,难度大,对数学思想的要求较高,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目