题目内容
设二次方程anx2-an+1x+1=0(n∈N*)有两个实根α和β,且满足6α-2αβ+6β=3.
(1)试用an表示an+1;
(2)求证:{an-
}是等比数列.
(1)试用an表示an+1;
(2)求证:{an-
| 2 | 3 |
分析:(1)由二次方程anx2-an+1x+1=0(n∈N*)有两个实根α和β,知α+β=
,αβ=
,由6α-2αβ+6β=3,得
-
= 3,由此能用用an表示an+1.
(2)由an+1=
an+
,知an+1-
=
(an-
),由此能够证明{an-
}是等比数列.
| an+1 |
| an |
| 1 |
| an |
| 6an+1 |
| an |
| 2 |
| an |
(2)由an+1=
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 2 |
| 3 |
解答:(1)解:∵二次方程anx2-an+1x+1=0(n∈N*)有两个实根α和β,
∴α+β=
,αβ=
,
∵6α-2αβ+6β=3,∴
-
= 3,
即6an+1-2=3an,得an+1=
an+
.
(2)证明:∵an+1=
an+
,
∴an+1-
=
an+
-
=
an-
,
∴an+1-
=
(an-
),
所以{an-
}是等比数列.
∴α+β=
| an+1 |
| an |
| 1 |
| an |
∵6α-2αβ+6β=3,∴
| 6an+1 |
| an |
| 2 |
| an |
即6an+1-2=3an,得an+1=
| 1 |
| 2 |
| 1 |
| 3 |
(2)证明:∵an+1=
| 1 |
| 2 |
| 1 |
| 3 |
∴an+1-
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
∴an+1-
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
所以{an-
| 2 |
| 3 |
点评:本题考查根与系数的关系的应用和等比数列的证明,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目