题目内容
设二次方程anx2-an+1x+1=0,n∈N+有两根α和β,且满足6α-2αβ+6β=3,a1=1.
(1)证明:{an-
}是等比数列,并求{an}的通项公式;
(2)设cn=n•(an-
),n∈N+,Tn为{cn}的前n项和,证明:Tn<2,(n∈N+).
(1)证明:{an-
| 2 |
| 3 |
(2)设cn=n•(an-
| 2 |
| 3 |
分析:(1)6α-2αβ+6β=3,即6•
-2
=3,可推出an+1=
an+
,n∈N+,由此能证明{an-
}是等比数列,并能求出并求{an}的通项公式.
(2)由an-
=(
)n,知cn=n(
)n,由此利用错位相减法能证明:Tn<2,(n∈N+).
| an+1 |
| an |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
(2)由an-
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(1)∵二次方程anx2-an+1x+1=0,n∈N+有两根α和β,
且满足6α-2αβ+6β=3,a1=1.
∴6•
-2
=3,
∴an+1=
an+
,n∈N+
an+1-
=
an+
-
=
(an-
),且a1-
=
∴{an-
}是以
为首项,公比为
的等比数列.
∴an-
=(
)n,
故an=(
)n+
.
(2)∵an-
=(
)n,cn=n•(an-
),n∈N+,∴cn=n(
)n,
Tn=1×
+2×(
)2+3×(
)3+…+n×(
)n,
Tn=1×(
)2+2×(
)3+3×(
)4+…+n×(
)n+1,
两式相减,得
Tn=
+(
)2+(
)3+…+(
)n-n×(
)n+1
=1-(
)n-n•(
)n+1,
∴Tn=2-
-n•
<2.
且满足6α-2αβ+6β=3,a1=1.
∴6•
| an+1 |
| an |
| 1 |
| an |
∴an+1=
| 1 |
| 2 |
| 1 |
| 3 |
an+1-
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
∴{an-
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an-
| 2 |
| 3 |
| 1 |
| 2 |
故an=(
| 1 |
| 2 |
| 2 |
| 3 |
(2)∵an-
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
Tn=1×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式相减,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1-(
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=2-
| 1 |
| 2n-1 |
| 1 |
| 2n |
点评:本题考查等差数列的证明,考查数列的通项公式的证明,考查不等式的证明.解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目