题目内容
1.已知矩阵A=$[\begin{array}{l}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}]$,则A的逆矩阵是$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$.分析 由矩阵A,求出|A|=-$\frac{1}{2}$,A*=$[\begin{array}{l}{-\frac{1}{2}}&{-1}\\{-\frac{3}{2}}&{-2}\end{array}]$,再由A-1=$\frac{1}{|A|}{A}^{*}$,能求出A的逆矩阵.
解答 解:∵矩阵A=$[\begin{array}{l}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}]$,∴|A|=$|\begin{array}{l}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}|$=-$\frac{1}{2}$,
∵A*=$[\begin{array}{l}{-\frac{1}{2}}&{-1}\\{-\frac{3}{2}}&{-2}\end{array}]$,
∴A的逆矩阵A-1=$\frac{1}{|A|}{A}^{*}$=$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$.
故答案为:$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$.
点评 本题考查逆矩阵的求法,是基础题,解题时要认真审题,注意行列式、伴随矩阵、逆矩阵的性质的合理运用.
练习册系列答案
相关题目
9.在正方体ABCD-A1B1C1D1中,过AC与BD1平行的平面必过( )
| A. | DD1的中点 | B. | DD1的三等分点 | C. | D1C1的中点 | D. | A1D1的中点 |
13.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其部分图象如图所示,则函数f(x)的解析式为( )
| A. | f(x)=2sin($\frac{1}{2}$x+$\frac{π}{4}$) | B. | f(x)=4sin($\frac{1}{2}$x+$\frac{π}{4}$) | C. | f(x)=2sin($\frac{1}{2}$x+$\frac{3π}{4}$) | D. | f(x)=4sin($\frac{1}{2}$x+$\frac{3π}{4}$) |