题目内容

4.已知函数$f(x)=sin(2x-\frac{π}{3})$.
(Ⅰ)当x∈R时,求f(x)的单调增区间;
(Ⅱ)当$x∈[0,\frac{π}{2}]$时,求f(x)的值域.

分析 (Ⅰ)利用正弦函数的单调增区间,求f(x)的单调增区间;
(Ⅱ)当$x∈[0,\frac{π}{2}]$时,$-\frac{π}{3}≤2x-\frac{π}{3}≤\frac{2π}{3}$,即可求f(x)的值域.

解答 解:(Ⅰ)∵$f(x)=sin(2x-\frac{π}{3})$,x∈R
由$-\frac{π}{2}+2kπ≤2x-\frac{π}{3}≤\frac{π}{2}+2kπ$,k∈Z---------(3分)
得$-\frac{π}{12}+kπ≤x≤\frac{5π}{12}+kπ$,
所以f(x)的单调递增区间是$[-\frac{π}{12}+kπ,\frac{5π}{12}+kπ]$,k∈Z.---------(5分)
(Ⅱ)∵$x∈[0,\frac{π}{2}]$∴$-\frac{π}{3}≤2x-\frac{π}{3}≤\frac{2π}{3}$---------(7分)
∴由三角函数图象可得 $-\frac{{\sqrt{3}}}{2}≤sin(2x-\frac{π}{3})≤1$----------(9分)
∴当$x∈[0,\frac{π}{2}]$,y=g(x)的值域为$[-\frac{{\sqrt{3}}}{2},1]$.---------------(10分)

点评 本题考查正弦函数的图象与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网