题目内容
8.已知向量|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=$\sqrt{6}$,若$\overrightarrow{a}$,$\overrightarrow{b}$间的夹角为$\frac{3π}{4}$,则|4$\overrightarrow{a}$-$\overrightarrow{b}$|=( )| A. | $\sqrt{57}$ | B. | $\sqrt{61}$ | C. | $\sqrt{78}$ | D. | $\sqrt{85}$ |
分析 由$|4\overrightarrow{a}-\overrightarrow{b}|=\sqrt{(4\overrightarrow{a}-\overrightarrow{b})^{2}}$,然后展开数量积公式求解.
解答 解:∵|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=$\sqrt{6}$,$\overrightarrow{a}$,$\overrightarrow{b}$间的夹角为$\frac{3π}{4}$,
∴|4$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(4\overrightarrow{a}-\overrightarrow{b})^{2}}=\sqrt{16{\overrightarrow{a}}^{2}-8\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$
=$\sqrt{16×3-8×\sqrt{3}×\sqrt{6}×(-\frac{\sqrt{2}}{2})+6}$=$\sqrt{78}$.
故选:C.
点评 本题考查平面向量的数量积运算,关键是熟记数量积公式,是基础题.
练习册系列答案
相关题目
16.在△ABC中,cosA=$\frac{3}{5}$,cosB=$\frac{4}{5}$,则sin(A+B)=( )
| A. | $\frac{7}{25}$ | B. | $\frac{9}{25}$ | C. | $\frac{16}{25}$ | D. | 1 |
3.若实数x,y满足不等式组$\left\{\begin{array}{l}{2x-3y+6≥0}\\{4x-y-8≤0}\\{x+y-2≥0}\end{array}\right.$,则z=x-y的最大值为( )
| A. | -2 | B. | -1 | C. | 0 | D. | 2 |
13.设A、B、C、D四点都在同一个平面上,且$\overrightarrow{AC}$+4$\overrightarrow{DC}$=5$\overrightarrow{BC}$,则( )
| A. | $\overrightarrow{AB}$=4$\overrightarrow{BD}$ | B. | $\overrightarrow{AB}$=5$\overrightarrow{BD}$ | C. | $\overrightarrow{AC}$=4$\overrightarrow{BD}$ | D. | $\overrightarrow{AC}$=5$\overrightarrow{BD}$ |
20.已知$\sqrt{3}$sin(π-x)+cos(-x)=$\frac{8}{5}$,则cos(x-$\frac{π}{3}$)=( )
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{7}{5}$ |
17.已知a=log23,b=log32,c=log0.52,那么( )
| A. | a<b<c | B. | a<c<b | C. | c<b<a | D. | b<c<a |