题目内容

19.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.
(1)求sin2x和cosx-sinx;
(2)求$\frac{sin2x+2si{n}^{2}x}{1-tanx}$的值.

分析 (1)由角在第四象限,得sinx<0,cosx>0,由(sinx+cosx)2=1+2sinxcosx=$\frac{1}{25}$,能求出sin2x和cosx-sinx.
(2)由sinx+cosx=$\frac{1}{5}$,cosx-sinx=$\frac{7}{5}$,先求出sinx=-$\frac{3}{5}$,cosx=$\frac{4}{5}$,由此能求出$\frac{sin2x+2si{n}^{2}x}{1-tanx}$的值.

解答 解:(1)∵-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$,
∴sinx<0,cosx>0,
(sinx+cosx)2=1+2sinxcosx=$\frac{1}{25}$,
∴sin2x=2sinxcosx=-$\frac{24}{25}$,
(cosx-sinx)2=1-2cosxsinx=1+$\frac{24}{25}$=$\frac{49}{25}$,
∴cosx-sinx=$\frac{7}{5}$.
(2)由(1)得sinx+cosx=$\frac{1}{5}$,cosx-sinx=$\frac{7}{5}$,
∴sinx=-$\frac{3}{5}$,cosx=$\frac{4}{5}$,∴tanx=$\frac{sinx}{cosx}$=-$\frac{3}{4}$,
∴$\frac{sin2x+2si{n}^{2}x}{1-tanx}$=$\frac{-\frac{24}{25}+2×(-\frac{3}{5})^{2}}{1-(-\frac{3}{4})}$=-$\frac{24}{175}$.

点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意同角三角函数关系式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网