题目内容

5.已知θ∈($\frac{π}{2}$,π),sinθ+cosθ=-$\frac{{\sqrt{10}}}{5}$,则tan(θ-$\frac{π}{4}$)的值为(  )
A.$\frac{1}{2}$B.2C.$-\frac{1}{2}$D.-2

分析 由条件求得tan(θ-$\frac{π}{4}$)<-1,利用同角三角函数的基本关系求得sin2θ=cos($\frac{π}{2}$-2θ)的值,再利用二倍角的余弦公式求得tan(θ-$\frac{π}{4}$)的值.

解答 解:∵θ∈($\frac{π}{2}$,π),sinθ+cosθ=-$\frac{{\sqrt{10}}}{5}$,∴θ∈($\frac{3π}{4}$,π),∴θ-$\frac{π}{4}$∈($\frac{π}{2}$,$\frac{3π}{4}$),tan(θ-$\frac{π}{4}$)<-1.
故1+2sinθcosθ=$\frac{2}{5}$,∴sin2θ=cos($\frac{π}{2}$-2θ)=$\frac{{cos}^{2}(\frac{π}{4}-θ){-sin}^{2}(\frac{π}{4}-θ)}{{cos}^{2}(\frac{π}{4}-θ){+sin}^{2}(\frac{π}{4}-θ)}$=$\frac{1{-tan}^{2}(\frac{π}{4}-θ)}{1{+tan}^{2}(\frac{π}{4}-θ)}$=-$\frac{3}{5}$,
求得tan(θ-$\frac{π}{4}$)=±2,故tan(θ-$\frac{π}{4}$)=-2,
故选:D.

点评 本题主要考查同角三角函数的基本关系、二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网