ÌâÄ¿ÄÚÈÝ
16£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=t-\frac{1}{t}}\\{y=t+\frac{1}{t}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨¦È+$\frac{¦Ð}{3}$£©=1£®£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÇóÁ½ÇúÏß½»µã¼äµÄ¾àÀ룮
·ÖÎö £¨1£©½«C1µÄ²ÎÊý·½³ÌÁ½±ßƽ·ÖÔÙÏà¼õÏûÈ¥²ÎÊýtµÃµ½ÆÕͨ·½³Ì£¬½«C2µÄ¼«×ø±ê·½³ÌÕ¹¿ª£¬¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓ¦¹ØÏµµÃ³öC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó³öC2µÄ²ÎÊý·½³Ì£¬´úÈëC1µÄÆÕͨ·½³Ì£¬¸ù¾Ý²ÎÊýµÄ¼¸ºÎÒâÒåµÃ³ö½»µã¼äµÄ¾àÀ룮
½â´ð ½â£º£¨1£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=t-\frac{1}{t}}\\{y=t+\frac{1}{t}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡à$\left\{\begin{array}{l}{{x}^{2}={t}^{2}+\frac{1}{{t}^{2}}-2}\\{{y}^{2}={t}^{2}+\frac{1}{{t}^{2}}+2}\end{array}\right.$£¬
¡àÇúÏßC1µÄÆÕͨ·½³ÌΪy2-x2=4£®¼´$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{4}=1$£®
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨¦È+$\frac{¦Ð}{3}$£©=1£¬¼´$\frac{1}{2}¦Ñsin¦È$+$\frac{\sqrt{3}}{2}$¦Ñcos¦È=1£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ$\frac{1}{2}$y+$\frac{\sqrt{3}}{2}x$-1=0£®¼´$\sqrt{3}$x+y-2=0£®
£¨2£©ÇúÏßC2µÄбÂÊk=-$\sqrt{3}$£¬ÇÒ¹ýµã£¨$\sqrt{3}$£¬-1£©£®
¡àÖ±ÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{1}{2}t}\\{y=-1+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
´úÈëC1µÄÆÕͨ·½³ÌµÃ£ºt2=12£®¡àt1=2$\sqrt{3}$£¬t2=-2$\sqrt{3}$£®
¡àÁ½ÇúÏß½»µã¼äµÄ¾àÀëΪ|t1-t2|=4$\sqrt{3}$£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬²ÎÊýµÄ¼¸ºÎÒâÒå¼°Ó¦Óã¬ÊôÖеµÌ⣮
| A£® | 4 | B£® | 3 | C£® | 2 | D£® | 1 |
| A£® | $\frac{1}{2}$ | B£® | 2 | C£® | $-\frac{1}{2}$ | D£® | -2 |