题目内容
在约束条件
下,目标函数z=3x+2y的最大值是 .
|
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答:
解:作出不等式组对于的平面区域如图:
由z=3x+2y,则y=-
x+
,
平移直线y=-
x+
,由图象可知当直线y=-
x+
,
经过点B时,直线y=-
x+
的截距最大,此时z最大,
由
,解得
,即B(1,2),
此时zmin=3×1+2×2=7,
故答案为:7
由z=3x+2y,则y=-
| 3 |
| 2 |
| z |
| 2 |
平移直线y=-
| 3 |
| 2 |
| z |
| 2 |
| 3 |
| 2 |
| z |
| 2 |
经过点B时,直线y=-
| 3 |
| 2 |
| z |
| 2 |
由
|
|
此时zmin=3×1+2×2=7,
故答案为:7
点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2}的不同分拆种数是( )
| A、8 | B、9 | C、16 | D、18 |
已知空间中的直线l和两个不同的平面α、β,且l?α,l?β.若α⊥β,则命题p:“l⊥β”是命题q:“l∥α”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
设p:x∈{x|y=lg(x-1)},q:x∈{x|2-x<1},则p是q的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |