题目内容
15.已知(1,1)是直线l被椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1所截得的线段的中点,则l的斜率是( )| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{4}$ | D. | $\frac{1}{4}$ |
分析 设直线l被椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1所截得的线段AB,A(x1,y1),B((x2,y2)
$\frac{{{x}_{1}}^{2}}{36}+\frac{{{y}_{1}}^{2}}{9}=1$,$\frac{{{x}_{2}}^{2}}{36}+\frac{{{y}_{2}}^{2}}{9}=1$⇒$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{36}$+$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{9}$=0,⇒$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\frac{1}{4}$,
解答 解:设直线l被椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1所截得的线段AB,A(x1,y1),B((x2,y2)
线段AB中点为(1,1),∴x1+x2=2,y1+y2=2
$\frac{{{x}_{1}}^{2}}{36}+\frac{{{y}_{1}}^{2}}{9}=1$,$\frac{{{x}_{2}}^{2}}{36}+\frac{{{y}_{2}}^{2}}{9}=1$⇒$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{36}$+$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{9}$=0,
⇒$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\frac{1}{4}$,l的斜率是$-\frac{1}{4}$.
故选:C
点评 本题考查了中点弦问题,点差法是最好的方法,属于基础题.
| A. | $\frac{1}{5}$ | B. | 5 | C. | $-\frac{1}{5}$ | D. | -5 |
| A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |