题目内容

已知集合A={t|t2-4≤0},对于满足集合A的所有实数t,使不等式x2+tx-t>2x-1恒成立的x的取值范围为(  )
A、(-∞,1)∪(3,+∞)
B、(-∞,-1)∪(3,+∞)
C、(-∞,-1)
D、(3,+∞)
考点:函数恒成立问题
专题:不等式的解法及应用
分析:由条件求出t的范围,不等式x2+tx-t>2x-1变形为x2+tx-t-2x+1>0恒成立,即不等式(x+t-1)(x-1)>0恒成立,再由不等式的左边两个因式同为正或
同为负处理.
解答: 解:由t2-4≤0得,-2≤t≤2,∴-1≤1-t≤3
不等式x2+tx-t>2x-1恒成立,即不等式x2+tx-t-2x+1>0恒成立,即不等式(x+t-1)(x-1)>0恒成立,
∴只需
x+t-1>0
x-1>0
x+t-1<0
x-1<0
恒成立,
∴只需
x>1-t
x>1
x<1-t
x<1
恒成立,∵-1≤1-t≤3
只需x>3或x<-1即可.
故选:B.
点评:本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网