题目内容

4.已知sinα=$\frac{4}{5}$,则$\frac{1+tanα}{1-tanα}$=-7或-$\frac{1}{7}$.

分析 由已知利用同角三角函数基本关系式可求cosα的值,利用同角三角函数基本关系式即可化简求值得解.

解答 解:∵sinα=$\frac{4}{5}$,
∴cosα=±$\sqrt{1-si{n}^{2}α}$=±$\frac{3}{5}$,
∴$\frac{1+tanα}{1-tanα}$=$\frac{\frac{cosα+sinα}{cosα}}{\frac{cosα-sinα}{cosα}}$=$\frac{cosα+sinα}{cosα-sinα}$=-7或-$\frac{1}{7}$.
故答案为:-7或-$\frac{1}{7}$.

点评 本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网