题目内容
8.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3-3x2-6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;
(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m-x0)-f(m),求证:h(m)h(x0)<0;
(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且$\frac{p}{q}$∈[1,x0)∪(x0,2],满足|$\frac{p}{q}$-x0|≥$\frac{1}{A{q}^{4}}$.
分析 (Ⅰ)求出函数的导函数g(x)=f′(x)=8x3+9x2-6x-6,求出极值点,通过列表判断函数的单调性求出单调区间即可.
(Ⅱ)由h(x)=g(x)(m-x0)-f(m),推出h(m)=g(m)(m-x0)-f(m),
令函数H1(x)=g(x)(x-x0)-f(x),求出导函数H′1(x)利用(Ⅰ)知,推出h(m)h(x0)<0.
(Ⅲ)对于任意的正整数p,q,且$\frac{p}{q}∈[1,{x}_{0})∪({x}_{0},2]$,令m=$\frac{p}{q}$,函数h(x)=g(x)(m-x0)-f(m).
由(Ⅱ)知,当m∈[1,x0)时,当m∈(x0,2]时,通过h(x)的零点.转化推出|$\frac{p}{q}$-x0|=$|\frac{f(\frac{p}{q})}{g({x}_{1})}|$≥$\frac{|f(\frac{p}{q})|}{g(2)}$=$\frac{|2{p}^{4}+3{p}^{3}q-3{p}^{2}{q}^{2}-6p{q}^{3}+a{q}^{4}|}{g(2){q}^{4}}$.推出|2p4+3p3q-3p2q2-6pq3+aq4|≥1.然后推出结果.
解答 (Ⅰ)解:由f(x)=2x4+3x3-3x2-6x+a,可得g(x)=f′(x)=8x3+9x2-6x-6,
进而可得g′(x)=24x2+18x-6.令g′(x)=0,解得x=-1,或x=$\frac{1}{4}$.
当x变化时,g′(x),g(x)的变化情况如下表:
| x | (-∞,-1) | (-1,$\frac{1}{4}$) | ($\frac{1}{4}$,+∞) |
| g′(x) | + | - | + |
| g(x) | ↗ | ↘ | ↗ |
(Ⅱ)证明:由h(x)=g(x)(m-x0)-f(m),得h(m)=g(m)(m-x0)-f(m),
h(x0)=g(x0)(m-x0)-f(m).
令函数H1(x)=g(x)(x-x0)-f(x),则H′1(x)=g′(x)(x-x0).
由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,
故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;
当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.
因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=-f(x0)=0,可得H1(m)>0即h(m)>0,
令函数H2(x)=g(x0)(x-x0)-f(x),则H′2(x)=g′(x0)-g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.
所以,h(m)h(x0)<0.
(Ⅲ)对于任意的正整数p,q,且$\frac{p}{q}∈[1,{x}_{0})∪({x}_{0},2]$,
令m=$\frac{p}{q}$,函数h(x)=g(x)(m-x0)-f(m).
由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;
当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.
所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)($\frac{p}{q}$-x0)-f($\frac{p}{q}$)=0.
由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),
于是|$\frac{p}{q}$-x0|=$|\frac{f(\frac{p}{q})}{g({x}_{1})}|$≥$\frac{|f(\frac{p}{q})|}{g(2)}$=$\frac{|2{p}^{4}+3{p}^{3}q-3{p}^{2}{q}^{2}-6p{q}^{3}+a{q}^{4}|}{g(2){q}^{4}}$.
因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,
所以f(x)在区间[1,2]上除x0外没有其他的零点,而$\frac{p}{q}$≠x0,故f($\frac{p}{q}$)≠0.
又因为p,q,a均为整数,所以|2p4+3p3q-3p2q2-6pq3+aq4|是正整数,
从而|2p4+3p3q-3p2q2-6pq3+aq4|≥1.
所以|$\frac{p}{q}$-x0|≥$\frac{1}{g(2){q}^{4}}$.所以,只要取A=g(2),就有|$\frac{p}{q}$-x0|≥$\frac{1}{A{q}^{4}}$.
点评 本题考查函数的导数的综合应用,函数的单调性以及函数的最值的求法,考查分类讨论思想以及转化思想的应用,是难度比较大的题目.
练习册系列答案
相关题目
16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+3,x≤1}\\{x+\frac{2}{x},x>1}\end{array}$,设a∈R,若关于x的不等式f(x)≥|$\frac{x}{2}$+a|在R上恒成立,则a的取值范围是( )
| A. | [-$\frac{47}{16}$,2] | B. | [-$\frac{47}{16}$,$\frac{39}{16}$] | C. | [-2$\sqrt{3}$,2] | D. | [-2$\sqrt{3}$,$\frac{39}{16}$] |
13.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为( )
| A. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | B. | $\frac{x^2}{12}-\frac{y^2}{4}=1$ | C. | $\frac{x^2}{3}-{y^2}=1$ | D. | ${x^2}-\frac{y^2}{3}=1$ |