题目内容
在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k丨n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2013∈[3];
②-3∈[2];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.
其中正确结论的个数是( )
①2013∈[3];
②-3∈[2];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.
其中正确结论的个数是( )
| A、1 | B、2 | C、3 | D、4 |
考点:进行简单的合情推理
专题:新定义,推理和证明
分析:根据2013被5除的余数为3,可判断①;将-3写出-5+2,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明④的真假.
解答:
解:①依题意2013被5除的余数为3,则①正确;
②由于-3=-5+2,故-3∈[2],即②正确;
③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,③正确;
④假设C中a=5n1+m1,b=5n2+m2,a-b=5(n1-n2)+m1-m2,a,b要是同类,
则m1-m2=0,所以a-b∈[0],
反之也成立,④正确;
故选D.
②由于-3=-5+2,故-3∈[2],即②正确;
③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,③正确;
④假设C中a=5n1+m1,b=5n2+m2,a-b=5(n1-n2)+m1-m2,a,b要是同类,
则m1-m2=0,所以a-b∈[0],
反之也成立,④正确;
故选D.
点评:本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理.
练习册系列答案
相关题目
已知和式S=
,当n趋向于∞时,S无限趋向于一个常数A,则A可用定积分表示为( )
| 12+22+32+…+n2 |
| n3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知函数f(x)=x3-ax在区间〔1,+∞〕内是单调函数,则a的最大值是( )
| A、3 | B、2 | C、2 | D、0 |
不等式a2+4≥4a中等号成立的条件是( )
| A、a=±2 | B、a=2 |
| C、a=-2 | D、a=4 |
点F是双曲线y2-
=1的焦点,过F的直线l与双曲线同一支交于两点,则直线l的倾斜角的取值范围是( )
| x2 |
| 3 |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、(0,
|
如图所示的程序框图中,则第3个输出的数是( )

| A、1 | ||
B、
| ||
| C、2 | ||
D、
|