题目内容
20.命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.若“p且q”为真命题,求m的取值范围.
分析 求出命题p、q为真时,m的取值范围,再求交集
解答 解:“p且q”为真命题,
当p为真命题时,则$\left\{\begin{array}{l}△={m^2}-4>0\\{x_1}+{x_2}=-m>0\\{x_1}{x_2}=1>0\end{array}\right.$,得m<-2;
当q为真命题时,则△=16(m+2)2-16<0,得-3<m<-1,
若“p且q”为真命题,则$\left\{\begin{array}{l}{m<-2}\\{-3<m<-1}\end{array}\right.$⇒-3<m<-2.
∴m的取值范围为:[-3,-2].
点评 本题考查了复合命题真假的应用.属于基础题.
练习册系列答案
相关题目
10.已知△ABC,$A({1,1}),B({1,3}),C({1+\sqrt{3},2})$,若点(x,y)在三角形内部(不包含边界),则z=-2x+y的取值范围是( )
| A. | $({-\sqrt{3},-1})$ | B. | (-1,1) | C. | $({-2\sqrt{3},1})$ | D. | $({-1,\sqrt{3}})$ |
15.某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

(1)根据茎叶图中的数据完成2×2列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)根据茎叶图中的数据完成2×2列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
| 购买意愿强 | 购买意愿弱 | 合计 | |
| 20-40岁 | |||
| 大于40岁 | |||
| 合计 |
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
| P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 6.635 | 10.828 |