题目内容
19.下列函数中在$(\frac{π}{4},\frac{3}{4}π)$上为减函数的是( )| A. | y=2cos2x-1 | B. | y=-tanx | C. | $y=cos(2x-\frac{π}{2})$ | D. | y=sin2x+cos2x |
分析 根据基本初等函数的图象与性质,对选项中函数的单调性进行分析、判定即可.
解答 解:对于A,y=2cos2x-1=cos2x,在$(\frac{π}{4},\frac{3}{4}π)$上是先减后增,不满足题意;
对于B,y=-tanx,在($\frac{π}{4}$,$\frac{π}{2}$)和($\frac{π}{2}$,$\frac{3π}{4}$)上都是增函数,不满足题意;
对于C,y=cos(2x-$\frac{π}{2}$)=sin2x,在$(\frac{π}{4},\frac{3}{4}π)$上为减函数,满足题意;
对于D,y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),在$(\frac{π}{4},\frac{3}{4}π)$上先减后增,不满足题意.
故选:C.
点评 本题考查了三角函数的图象与性质的应用问题,是基础题目.
练习册系列答案
相关题目
10.已知函数f(x)是定义在R上的奇函数.当x≥0时,f(x)=2x+t(t为常数).则f(m)<3成立的一个充分不必要条件是( )
| A. | m<3 | B. | m<2 | C. | -2<m<2 | D. | m>2 |
7.某种产品的质量以其指标值来衡量,其指标值越大表明质量越好,且指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的指标值,得到了下面的试验结果:
A配方的频数分布表
B配方的频数分布表
(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其指标值t的关系式为y=$\left\{\begin{array}{l}{-2,y<94}\\{2,94≤t<102}\\{4,t≥102}\end{array}\right.$,估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述产品平均每件的利润.
A配方的频数分布表
| 指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
| 频数 | 8 | 20 | 42 | 22 | 8 |
| 指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
| 频数 | 4 | 12 | 42 | 32 | 10 |
(2)已知用B配方生产的一件产品的利润y(单位:元)与其指标值t的关系式为y=$\left\{\begin{array}{l}{-2,y<94}\\{2,94≤t<102}\\{4,t≥102}\end{array}\right.$,估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述产品平均每件的利润.
4.某单位员工按年龄分为A,B,C三组,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,若C组中甲、乙二人均被抽到的概率是$\frac{1}{45}$,则该单位员工总数为( )
| A. | 110 | B. | 100 | C. | 90 | D. | 80 |
11.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{6}$ |
8.“a=3“是“直线(a2-2a)x+y=0和直线3x+y+1=0平行”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |