题目内容

9.不等式3x-5>5x+3的解集{x|x<-4};不等式组$\left\{\begin{array}{l}{x-1≥1-x}\\{x+8>4x-1}\end{array}\right.$的整数解是1和2.

分析 利用移项,通分,转化不等式求解即可.不等式组求解他们的交集.

解答 解:不等式3x-5>5x+3,
可得:-8>2x,
∴x<-4.
故得原不等式的解集为{x|x<-4}.
故答案为:{x|x<-4}.
不等式组$\left\{\begin{array}{l}{x-1≥1-x}\\{x+8>4x-1}\end{array}\right.$,
由x-1≥1-x,解得:x≥1.
由x+8>4x-1,解得:x<3.
故得原不等式的解集为{x|1≤x<3}.
故答案为:1和2.

点评 本题考查不等式组的解法,基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网