题目内容

18.已知圆C:x2+y2+bx+ay-3=0(a>0,b>0)上任意一点关于直线l:x+y+2=0的对称点都在圆C上,则$\frac{2}{a}+\frac{1}{b}$的最小值为$\frac{3}{4}$+$\frac{\sqrt{2}}{2}$.

分析 求出圆的圆心坐标,由题意可知圆心在直线上,得到a,b的方程,然后利用基本不等式求出$\frac{2}{a}+\frac{1}{b}$的最小值.

解答 解:圆C:x2+y2+bx+ay-3=0(a>0,b>0),所以圆的圆心坐标(-$\frac{b}{2}$,-$\frac{a}{2}$),
因为圆C:x2+y2+bx+ay-3=0(a>0,b>0)上任意一点关于直线l:x+y+2=0的对称点都在圆C上,
所以直线经过圆心,即a+b=4.
∴$\frac{2}{a}+\frac{1}{b}$=$\frac{1}{4}$(a+b)($\frac{2}{a}+\frac{1}{b}$)=$\frac{3}{4}$+$\frac{1}{4}$($\frac{a}{b}$+$\frac{2b}{a}$)≥$\frac{3}{4}$+$\frac{\sqrt{2}}{2}$
当且仅当$\frac{a}{b}$=$\frac{2b}{a}$时,等号成立,故$\frac{2}{a}+\frac{1}{b}$的最小值为$\frac{3}{4}$+$\frac{\sqrt{2}}{2}$,
故答案为:$\frac{3}{4}$+$\frac{\sqrt{2}}{2}$.

点评 本题考查直线与圆的位置关系,基本不等式的应用,考查转化思想,计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网