题目内容

设A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}
(1)若∅≠A∩B,且A∩C=∅,求实数a的值;
(2)A∩B=A∩C≠∅,求a的值.
考点:交集及其运算
专题:集合
分析:(1)由已知得B={2,3},C={-4,2},∅≠A∩B,且A∩C=∅,从而A={x|x2-ax+a2-19=0}={3},由此能求出a=-2.
(Ⅱ)由A∩B=A∩C≠∅,得A={x|x2-ax+a2-19=0}={2},由此能求出a=-3.
解答: 解:(1)∵B={x|x2-5x+6=0}={2,3},C={x|x2+2x-8=0}={-4,2},
∅≠A∩B,且A∩C=∅,
∴A={x|x2-ax+a2-19=0}={3},
∴9-3a+a2-19=0,解得a=-2或a=5,
经检验,得a=-2成立,a=5不成立,
∴a=-2.
(Ⅱ)∵A∩B=A∩C≠∅,∴A={x|x2-ax+a2-19=0}={2},
∴4-2a+a2-19=0,
解得a=-3或a=5,
经检验,得a=-3成立,a=5不成立,
∴a=-3.
点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网