题目内容

13.已知函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{12}$,$\frac{π}{3}$)上有最大值,但没有最小值,则ω的取值范围是($\frac{3}{4}$,3).

分析 要求函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{12}$,$\frac{π}{3}$)上有最大值,但没有最小值,可得ω•$\frac{π}{12}$+$\frac{π}{4}$<$\frac{π}{2}$<ω•$\frac{π}{3}$+$\frac{π}{4}$≤$\frac{3π}{2}$,解之即可得结论.

解答 解:要求函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{12}$,$\frac{π}{3}$)上有最大值,但没有最小值,
∴ω•$\frac{π}{12}$+$\frac{π}{4}$<$\frac{π}{2}$<ω•$\frac{π}{3}$+$\frac{π}{4}$<$\frac{3π}{2}$
解之即可得:ω∈($\frac{3}{4}$,3).
故答案为($\frac{3}{4}$,3).

点评 本题主要考查研究有关三角的函数时要利用整体思想,灵活应用三角函数的图象和性质解题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网