题目内容

15.设集合A={a1,a2,…,an}(其中ai∈R,i=1,2,…,n),a0为常数,定义:ω=$\frac{1}{n}$[sin2(a1-a0)+sin2(a2-a0)+…+sin2(an-a0)]为集合A相对a0的“正弦方差”,则集合{$\frac{π}{2}$,π}相对a0的“正弦方差”为$\frac{1}{2}$.

分析 直接利用新定义,列出关系式求解即可.

解答 解:设集合A={a1,a2,…,an}(其中ai∈R,i=1,2,…,n),a0为常数,
定义:ω=$\frac{1}{n}$[sin2(a1-a0)+sin2(a2-a0)+…+sin2(an-a0)]为集合A相对a0的“正弦方差”,
则集合$\left\{{\frac{π}{2},π}\right\}$相对a0的“正弦方”为:$\frac{1}{2}$(sin2($\frac{π}{2}$-a0)+sin2(π-a0))=$\frac{1}{2}$(cos2a0+sin2a0)=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$

点评 本题考查新定义的应用,三角函数的化简求值,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网