题目内容

已知函数f(x)=
1
x2
+4(x≠0),各项均为正数的数列{an}中a1=1,
1
an+12
=f(an),(n∈N*).
(1)求数列{an}的通项公式;
(2)在数列{bn}中,对任意的正整数n,bn
(3n-1)an2+n
an2
=1都成立,设Sn为数列{bn}的前n项和.试比较Sn
1
2
的大小.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件得
1
an+12
=
1
an2
+4
,由此能求出an=
1
4n-3

(2)由已知得bn=
an2
(3n-1)an2+n
=
1
4n-3
3n-1
4n-3
+n
=
1
4n2-1
=
1
2
(
1
2n-1
-
1
2n+1
)
,由此利用裂项求和法能求出Sn=
1
2
-
1
4n+2
1
2
解答: 解:(1)∵数f(x)=
1
x2
+4(x≠0),
各项均为正数的数列{an}中a1=1,
1
an+12
=f(an),
1
an+12
=
1
an2
+4

1
an2
=1+(n-1)×4=4n-3,
∴an=
1
4n-3

(2)∵bn
(3n-1)an2+n
an2
=1,
∴bn=
an2
(3n-1)an2+n
=
1
4n-3
3n-1
4n-3
+n

=
1
4n2-1
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Sn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1
),
=
1
2
-
1
4n+2
1
2

∴Sn
1
2
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网