题目内容
已知函数f(x),f(1)=1且?x1,x2∈R,都有f(x1+x2)=1+f(x1)+f(x2)恒成立.?n∈N*,
有an=
,bn=f(
)+1,
(1)记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…bnbn+1,比较
Sn与Tn的大小并给出证明;
(2)若不等式an+1+an+2+…+a2n>
[log
(2x+1)-log
(8x2-2)+1]对?n≥2都成立,求x的取值范围.
有an=
| 1 |
| f(n) |
| 1 |
| 2n |
(1)记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…bnbn+1,比较
| 4 |
| 3 |
(2)若不等式an+1+an+2+…+a2n>
| 6 |
| 35 |
| 1 |
| 2 |
| 1 |
| 2 |
考点:数列的求和,抽象函数及其应用,等差数列与等比数列的综合
专题:等差数列与等比数列
分析:(1)由已知条件推导出f(n)=2n-1.从而an=
,bn=f(
)+1=
.由此利用裂项求和法得
Sn=
(1-
).利用等比数列性质得Tn=
[1-(
)n].进而利用二项式定理能证明
Sn<Tn.
(2)令F(n)=an+1+an+2+…+a2n,F(n+1)-F(n)=
>0,由此利用已知条件推导出1+log
(8x2-2)>log
(2x+1),从而能求出
<x<1.
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2n-1 |
| 4 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2n+1 |
| 2 |
| 3 |
| 1 |
| 4 |
| 4 |
| 3 |
(2)令F(n)=an+1+an+2+…+a2n,F(n+1)-F(n)=
| 1 |
| (2n+1)(4n+1)(4n+3) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:(1)∵有f(x1+x2)=1+f(x1)+f(x2),
∴f(n+1)=1+f(n)+f(1)=f(n)+2,n∈N*,
∴数列{f(n)}是以2为公差,1为首项的等差数列,
∴f(n)=2n-1.
∴an=
,bn=f(
)+1=
.
∴Sn=a1a2+a2a3+…+anan+1
=
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
),
∴
Sn=
(1-
).
Tn=b1b2+b2b3+…bnbn+1
=(
)0(
)+(
)(
)2+…+(
)n-1(
)n
=
+(
)3+…+(
)2n-1
=
=
[1-(
)n].
∵4n=(1+3)n=
3+
32+…+
3n≥
+
•3=3n+1>2n+1.
∴
Sn<Tn.…9分
(2)令F(n)=an+1+an+2+…+a2n,
则F(n+1)-F(n)=a2n+1+a2n+2-an+1
=
+
-
=
>0,
∴当n≥2时,F(n)>F(n-1)>…>F(2)=
,…12分
an+1+an+2+…+a2n>
[log
(2x+1)-log
(8x2-2)+1]对?n≥2都成立,
∴
>
[log
(2x+1)-log
(8x2-2)+1],
∴1+log
(8x2-2)>log
(2x+1),
∴
,解得
<x<1.
∴f(n+1)=1+f(n)+f(1)=f(n)+2,n∈N*,
∴数列{f(n)}是以2为公差,1为首项的等差数列,
∴f(n)=2n-1.
∴an=
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2n-1 |
∴Sn=a1a2+a2a3+…+anan+1
=
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| (2n-1)(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
∴
| 4 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2n+1 |
Tn=b1b2+b2b3+…bnbn+1
=(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||||
1-
|
| 2 |
| 3 |
| 1 |
| 4 |
∵4n=(1+3)n=
| C | 0 n |
| +C | 1 n |
| C | 2 n |
| C | n n |
| C | 0 n |
| C | 1 n |
∴
| 4 |
| 3 |
(2)令F(n)=an+1+an+2+…+a2n,
则F(n+1)-F(n)=a2n+1+a2n+2-an+1
=
| 1 |
| 4n+1 |
| 1 |
| 4n+3 |
| 1 |
| 2n+1 |
=
| 1 |
| (2n+1)(4n+1)(4n+3) |
∴当n≥2时,F(n)>F(n-1)>…>F(2)=
| 12 |
| 35 |
an+1+an+2+…+a2n>
| 6 |
| 35 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 12 |
| 35 |
| 6 |
| 35 |
| 1 |
| 2 |
| 1 |
| 2 |
∴1+log
| 1 |
| 2 |
| 1 |
| 2 |
∴
|
| 1 |
| 2 |
点评:本题考查两数大小的比较,考查实数的取值范围的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
已知f(n)=1+
+
+…+
(n∈N*),计算得f(2)=
,f(4)>2,f(8)>
,f(16)>3,f(32)>
,由此推算:当n≥2时,有( )
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 3 |
| 2 |
| 5 |
| 2 |
| 7 |
| 2 |
A、f(2n)>
| ||
B、f(2n)>
| ||
C、f(2n)>
| ||
D、f(2n)>
|
f(x)=ln(4+3x-x2)的单调递增区间是( )
A、(-∞,
| ||
B、[
| ||
C、(-1,
| ||
D、[
|
| AB |
| AP |
| BA |
| BQ |
| AB |
| AQ |
| BA |
| BP |
| A、m=2,n=4 |
| B、m=3,n=1 |
| C、m=2,n=6 |
| D、m=3n,但m,n的值不确定 |