题目内容

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=
1
2
AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(1)在CD上找一点F,使AD∥平面EFB;
(2)求点C到平面ABD的距离.
考点:点、线、面间的距离计算,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)取CD的中点F,连结EF,BF,在△ACD中,可证AD∥EF,又EF⊆平面EFB AD?平面EFB,可证AD∥平面EFB.
(2)设点C到平面ABD的距离为h,由于可证AD⊥BD,可得S△ADB=2
3
,又三棱锥B-ACD的高BC=2
2
,S△ACD=2,由
1
3
×2
2
h
=
1
3
×2×2
2
即可解得点C到平面ABD的距离.
解答: (1)取CD的中点F,连结EF,BF,
在△ACD中,∵E,F分别为AC,DC的中点,
∴EF为△ACD的中位线
∴AD∥EF,
EF⊆平面EFB,AD?平面EFB
∴AD∥平面EFB.

(2)设点C到平面ABD的距离为h,
∵平面ADC⊥平面ABC,且BC⊥AC,
∴BC⊥平面ADC,
∴BC⊥AD,而AD⊥DC•
∴AD⊥平面BCD,即AD⊥BD•
S△ADB=2
3

∴三棱锥B-ACD的高BC=2
2
,S△ACD=2,
1
3
×2
2
h
=
1
3
×2×2
2

∴可解得:h=2.
点评:本题主要考查了直线与平面平行的判定,考查了点、线、面间的距离计算,考查了空间想象能力和转化思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网