题目内容

从6名教师中选4名开设A,B,C,D四门课程,每人开设一门课程且开设的课程各不相同,若这6名教师中甲、乙两人不开设A课程,则不同的选择方案共有(  )
A、300种B、240种
C、144种D、96种
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:根据题意,按甲乙是否参加分3种情况讨论:①选出的4人不含甲乙,②选出的4人只含甲、乙中的一人,③选出的4人含甲、乙二人,甲乙均参加,由排列、组合公式分别求出每种情况下的选择方案数目,由分类计数原理将其相加即可得答案.
解答: 解:根据题意,需要从6名教师中选4名,按甲乙是否参加分3种情况讨论:
①选出的4人不含甲乙,将剩余的4人全排列,对应四门课程即可,有A44=24种选择方案,
②选出的4人只含甲、乙中的一人,
甲或乙参加有2种情况,在剩余4人中选出三人,有C43=4种选法,
此时甲有3门课程可选,剩余3人全排列,对应其他三门课程即可,共有3A33=18种方案,
此时有2×4×18=144种选择方案,
③选出的4人含甲、乙二人,甲乙均参加,有1种情况,
在剩余4人中选出2人,有C42=6种选法,
此时甲、乙有A32=6种情况,剩余2人全排列,对应其他二门课程即可,共有6A22=12种方案,
此时有1×6×12=72种选择方案,
共有24+144+72=240种选择方案;
故选:B.
点评:本题考查排列、组合的应用,涉及分类加法原理,分类讨论的关键在于确定分类讨论的依据、标准,一定做到不重不漏.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网