题目内容
| AB |
| AC |
| OC |
| OB |
| OA |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:把
用基底
,
表示,然后利用数量积运算展开,代入|
|=|
|=1得答案.
| OC |
| OA |
| OB |
| OA |
| OB |
解答:
解:
=
+
=
+
=
+
(
-
)=
+
,
则
•(
-
)=(
+
)(
-
)=
|
|2-
•
+
•
-
|
|2
=
-
=-
.
故答案为:-
.
| OC |
| OA |
| AC |
| OA |
| 1 |
| 4 |
| AB |
| OA |
| 1 |
| 4 |
| OB |
| OA |
| 1 |
| 4 |
| OB |
| 3 |
| 4 |
| OA |
则
| OC |
| OB |
| OA |
| 1 |
| 4 |
| OB |
| 3 |
| 4 |
| OA |
| OB |
| OA |
| 1 |
| 4 |
| OB |
| 1 |
| 4 |
| OB |
| OA |
| 3 |
| 4 |
| OA |
| OB |
| 3 |
| 4 |
| OA |
=
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
故答案为:-
| 1 |
| 2 |
点评:本题考查了平面向量的数量积运算,关键是把
用基底
,
表示,是基础题.
| OC |
| OA |
| OB |
练习册系列答案
相关题目
数列{an}满足a1=
,
=
-1(n∈N*),则a10=( )
| 1 |
| 2 |
| 1 |
| an+1-1 |
| 1 |
| an-1 |
A、
| ||
B、
| ||
C、
| ||
D、
|
在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,则cos∠DAC=( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|