题目内容
13.已知函数f(x)=2sinxcosx-2sin2x+1.(1)x∈[0,$\frac{π}{2}$],求函数f(x)的值域;
(2)x∈[0,π],求f(x)的单调递增区间.
分析 f(x)=2sinxcosx-2sin2x+1=$sin2x+cos2x=\sqrt{2}sin(2x+\frac{π}{4})$,利用正弦函数的性质即可求解.
解答 解:f(x)=2sinxcosx-2sin2x+1=$sin2x+cos2x=\sqrt{2}sin(2x+\frac{π}{4})$
(1)∵$x∈[0,\frac{π}{2}]$,∴$2x+\frac{π}{4}∈[\frac{π}{4},\frac{5π}{4}]$,
∴$f(x)=\sqrt{2}sin(2x+\frac{π}{4})∈[-1,\sqrt{2}]$
(2)由$f(x)=\sqrt{2}sin(2x+\frac{π}{4})$,单调递增区间为$[kπ-\frac{3π}{8},kπ+\frac{π}{8}]$(k∈Z)
∴在[0,π]单调递增区间为$[0,\frac{π}{8}],和[\frac{5π}{8},π]$.
点评 本题考查三角函数的性质,考查学生的计算能力,正确化简函数是关键.
练习册系列答案
相关题目
1.已知函数f(x)=loga(x-m)的图象过点(4,0)和(7,1),则f(x)在定义域上是( )
| A. | 增函数 | B. | 减函数 | C. | 奇函数 | D. | 偶函数 |
8.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500ml以上为常喝,体重超过50kg为肥胖.
已知在这30人中随机抽取1人,抽到肥胖的学生的概率为$\frac{4}{15}$.
(1)请将上面的列联表补充完整.
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.
参考数据:
参考公式:K2=$\frac{n(ad-cb)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 常喝 | 不常喝 | 合计 | |
| 肥胖 | 2 | ||
| 不肥胖 | 18 | ||
| 合计 | 30 |
(1)请将上面的列联表补充完整.
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.
参考数据:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
18.设函数g(x)=x(x2-1),则g(x)在区间[0,1]上的最小值为( )
| A. | -1 | B. | 0 | C. | -$\frac{2\sqrt{3}}{9}$ | D. | $\frac{\sqrt{3}}{3}$ |
5.设全集U={-2,-1,0,1,2},集合A={x|x2-x-2=0},B={1,2},则(∁UA)∪B=( )
| A. | {-2,-1,0,1,2} | B. | {-2,0,1,2} | C. | {-1,2} | D. | {-1,1,2} |