题目内容
19.已知直线ax+y+2=0与直线x-(3a-1)y-1=0互相垂直,则a=$\frac{1}{2}$.分析 由直线的垂直关系可得a的方程,解方程可得a值.
解答 解:∵直线ax+y+2=0与直线x-(3a-1)y-1=0互相垂直,
∴a•1+1•(-3a+1)=0,解得a=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查直线的一般式方程和垂直关系,属基础题.
练习册系列答案
相关题目
7.若z=1-2i,则复数$\frac{1}{z}$-|z-1|在复平面上对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
9.某校为了解高一新生对文理科的选择,对1000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.
(1)分别从选择理科和文科的学生中随机抽取20名学生的数学成绩如下积累表:
①从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图:

②根据绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分;
(2)现用分层抽样从高一新生中抽取5名学生,再从这5名学生中任抽取两名学生,求至少有一名学生选择文科的概率.
(1)分别从选择理科和文科的学生中随机抽取20名学生的数学成绩如下积累表:
| 分数段 | 理科人数 | 文科人数 |
| [40,50) | 2 | |
| [50,60) | 1 | 4 |
| [60,70) | 3 | 4 |
| [70,80) | 5 | 5 |
| [80,90) | 5 | 3 |
| [90,100] | 4 | 2 |
②根据绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分;
(2)现用分层抽样从高一新生中抽取5名学生,再从这5名学生中任抽取两名学生,求至少有一名学生选择文科的概率.