ÌâÄ¿ÄÚÈÝ
¸ø¶¨Ò»¸öÊýÁÐ{an}£¬ÔÚÕâ¸öÊýÁÐÀÈÎÈ¡m£¨m¡Ý3£¬m¡ÊN*£©Ï²¢ÇÒ²»¸Ä±äËüÃÇÔÚÊýÁÐ{an}ÖеÄÏȺó´ÎÐò£¬µÃµ½µÄÊýÁÐ{an}µÄÒ»¸öm½××ÓÊýÁУ®
ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=
£¨n¡ÊN*£¬aΪ³£Êý£©£¬µÈ²îÊýÁÐa2£¬a3£¬a6ÊÇÊýÁÐ{an}µÄÒ»¸ö3×Ó½×ÊýÁУ®
£¨1£©ÇóaµÄÖµ£»
£¨2£©µÈ²îÊýÁÐb1£¬b2£¬¡£¬bmÊÇ{an}µÄÒ»¸öm£¨m¡Ý3£¬m¡ÊN*£©½××ÓÊýÁУ¬ÇÒb1=
£¨kΪ³£Êý£¬k¡ÊN*£¬k¡Ý2£©£¬ÇóÖ¤£ºm¡Ük+1
£¨3£©µÈ±ÈÊýÁÐc1£¬c2£¬¡£¬cmÊÇ{an}µÄÒ»¸öm£¨m¡Ý3£¬m¡ÊN*£©½××ÓÊýÁУ¬ÇóÖ¤£ºc1+c1+¡+cm¡Ü2-
£®
ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=
| 1 |
| n+a |
£¨1£©ÇóaµÄÖµ£»
£¨2£©µÈ²îÊýÁÐb1£¬b2£¬¡£¬bmÊÇ{an}µÄÒ»¸öm£¨m¡Ý3£¬m¡ÊN*£©½××ÓÊýÁУ¬ÇÒb1=
| 1 |
| k |
£¨3£©µÈ±ÈÊýÁÐc1£¬c2£¬¡£¬cmÊÇ{an}µÄÒ»¸öm£¨m¡Ý3£¬m¡ÊN*£©½××ÓÊýÁУ¬ÇóÖ¤£ºc1+c1+¡+cm¡Ü2-
| 1 |
| 2m-1 |
¿¼µã£ºÊýÁеÄÇóºÍ,µÈ²îÊýÁеÄÐÔÖÊ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÀûÓõȲîÊýÁе͍Òå¼°ÆäÐÔÖʼ´¿ÉµÃ³ö£»
£¨2£©ÉèµÈ²îÊýÁÐb1£¬b2£¬¡£¬bmµÄ¹«²îΪd£®ÓÉb1=
£¬¿ÉµÃb2¡Ü
£¬ÔÙÀûÓõȲîÊýÁеÄͨÏʽ¼°Æä²»µÈʽµÄÐÔÖʼ´¿ÉÖ¤Ã÷£»
£¨3£©Éèc1=
£¨t¡ÊN*£©£¬µÈ±ÈÊýÁÐc1£¬c2£¬¡£¬cmµÄ¹«±ÈΪq£®ÓÉc2¡Ü
£¬¿ÉµÃq=
¡Ü
£®´Ó¶øcn=c1qn-1¡Ü
(
)n-1£¨1¡Ün¡Üm£¬n¡ÊN*£©£®ÔÙÀûÓõȱÈÊýÁеÄǰnÏîºÍ¹«Ê½¡¢º¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
£¨2£©ÉèµÈ²îÊýÁÐb1£¬b2£¬¡£¬bmµÄ¹«²îΪd£®ÓÉb1=
| 1 |
| k |
| 1 |
| k+1 |
£¨3£©Éèc1=
| 1 |
| t |
| 1 |
| t+1 |
| c2 |
| c1 |
| t |
| t+1 |
| 1 |
| t |
| t |
| t+1 |
½â´ð£º
£¨1£©½â£º¡ßa2£¬a3£¬a6³ÉµÈ²îÊýÁУ¬
¡àa2-a3=a3-a6£®
ÓÖ¡ßa2=
£¬a3=
£¬a6=
£¬
´úÈëµÃ
-
=
-
£¬½âµÃa=0£®
£¨2£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐb1£¬b2£¬¡£¬bmµÄ¹«²îΪd£®
¡ßb1=
£¬¡àb2¡Ü
£¬
´Ó¶ød=b2-b1¡Ü
-
=-
£®
¡àbm=b1+£¨m-1£©d¡Ü
-
£®
ÓÖ¡ßbm£¾0£¬¡à
-
£¾0£®
¼´m-1£¼k+1£®
¡àm£¼k+2£®
ÓÖ¡ßm£¬k¡ÊN*£¬¡àm¡Ük+1£®
£¨3£©Ö¤Ã÷£ºÉèc1=
£¨t¡ÊN*£©£¬µÈ±ÈÊýÁÐc1£¬c2£¬¡£¬cmµÄ¹«±ÈΪq£®
¡ßc2¡Ü
£¬¡àq=
¡Ü
£®
´Ó¶øcn=c1qn-1¡Ü
(
)n-1£¨1¡Ün¡Üm£¬n¡ÊN*£©£®
¡àc1+c2+¡+cm¡Ü
+
(
)1+
(
)2+¡+
(
)m-1
=
[1-(
)m]£¬
É躯Êýf£¨x£©=x-
£¬£¨m¡Ý3£¬m¡ÊN*£©£®
µ±x¡Ê£¨0£¬+¡Þ£©Ê±£¬º¯Êýf£¨x£©=x-
Ϊµ¥µ÷Ôöº¯Êý£®
¡ßµ±t¡ÊN*£¬¡à1£¼
¡Ü2£®¡àf£¨
£©¡Ü2-
£®
¼´ c1+c2+¡+cm¡Ü2-
£®
¡àa2-a3=a3-a6£®
ÓÖ¡ßa2=
| 1 |
| 2+a |
| 1 |
| 3+a |
| 1 |
| 6+a |
´úÈëµÃ
| 1 |
| 2+a |
| 1 |
| 3+a |
| 1 |
| 3+a |
| 1 |
| 6+a |
£¨2£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐb1£¬b2£¬¡£¬bmµÄ¹«²îΪd£®
¡ßb1=
| 1 |
| k |
| 1 |
| k+1 |
´Ó¶ød=b2-b1¡Ü
| 1 |
| k+1 |
| 1 |
| k |
| 1 |
| k(k+1) |
¡àbm=b1+£¨m-1£©d¡Ü
| 1 |
| k |
| m-1 |
| k(k+1) |
ÓÖ¡ßbm£¾0£¬¡à
| 1 |
| k |
| m-1 |
| k(k+1) |
¼´m-1£¼k+1£®
¡àm£¼k+2£®
ÓÖ¡ßm£¬k¡ÊN*£¬¡àm¡Ük+1£®
£¨3£©Ö¤Ã÷£ºÉèc1=
| 1 |
| t |
¡ßc2¡Ü
| 1 |
| t+1 |
| c2 |
| c1 |
| t |
| t+1 |
´Ó¶øcn=c1qn-1¡Ü
| 1 |
| t |
| t |
| t+1 |
¡àc1+c2+¡+cm¡Ü
| 1 |
| t |
| 1 |
| t |
| t |
| t+1 |
| 1 |
| t |
| t |
| t+1 |
| 1 |
| t |
| t |
| t+1 |
=
| t+1 |
| t |
| t |
| t+1 |
É躯Êýf£¨x£©=x-
| 1 |
| xm-1 |
µ±x¡Ê£¨0£¬+¡Þ£©Ê±£¬º¯Êýf£¨x£©=x-
| 1 |
| xm-1 |
¡ßµ±t¡ÊN*£¬¡à1£¼
| t+1 |
| t |
| t+1 |
| t |
| 1 |
| 2m-1 |
¼´ c1+c2+¡+cm¡Ü2-
| 1 |
| 2m-1 |
µãÆÀ£º±¾Ì⿼²éÁËÀûÓõȱÈÊýÁÐÓëµÈ²îÊýÁеÄͨÏʽ¼°ÆäǰnÏîºÍ¹«Ê½¡¢º¯ÊýµÄµ¥µ÷ÐÔ¡¢²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¸´Êýz=
£¨ÆäÖÐiΪÐéÊýµ¥Î»£©ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãËùÔÚµÄÏóÏÞΪ£¨¡¡¡¡£©
| 3-i |
| 1+i |
| A¡¢µÚÒ»ÏóÏÞ | B¡¢µÚ¶þÏóÏÞ |
| C¡¢µÚÈýÏóÏÞ | D¡¢µÚËÄÏóÏÞ |
ÒÑÖªA={x|x2-4x-5=0}£¬B={x|x2=1}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
| A¡¢{1} |
| B¡¢{1£¬-1£¬5} |
| C¡¢{-1} |
| D¡¢{1£¬-1£¬-5} |