题目内容
抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是( ).
A. B. C.1 D.
B
若直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则k,b的值分别为( ).
A.k=,b=-4 B.k=-,b=4
C.k=,b=4 D.k=-,b=-4
设F1,F2是双曲线C:-=1(a>0,b>0)的两个焦点.若在C上存在一点P,使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为________.
已知点F是双曲线-=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是( ).
A.(1,2) B.(,2) C.(,2) D.(2,3)
过抛物线E:x2=2py(p>0)的焦点F作斜率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2,l1与E相交于点A,B,l2与E相交于点C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.
(1)若k1>0,k2>0,证明:·<2p2;
(2)若点M到直线l的距离的最小值为,求抛物线E的方程.
若点P到直线y=-1的距离比它到点(0,3)的距离小2,则点P的轨迹方程是________.
已知椭圆C:+=1的右焦点为F,抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的倾斜角为120°,那么|PF|=________.
△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程______________.
已知双曲线方程是x2-=1,过定点P(2,1)作直线交双曲线于P1,P2两点,并使P(2,1)为P1P2的中点,则此直线方程是________.