题目内容
已知数列{bn}满足bn+1=
bn+
,且b1=
,Tn为{bn}的前n项和.
(Ⅰ)求证:数列{bn-
}是等比数列,并求出{bn}的通项公式;
(Ⅱ)如果对任意n∈N*,不等式
≤n2+4n+5恒成立,求实数k的取值范围.
| 1 |
| 2 |
| 1 |
| 4 |
| 7 |
| 2 |
(Ⅰ)求证:数列{bn-
| 1 |
| 2 |
(Ⅱ)如果对任意n∈N*,不等式
| 2Tn+3•22n-1-10 |
| k |
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得bn+1-
=
(bn-
),由此证明{bn-
}成等比数列,并求出bn=3×(
)n-1+
.
(Ⅱ)由bn=3×(
)n-1+
,利用分组求和法得到Tn=6(1-
)+
,由此利用已知条件得到k≥
对任意n∈N*恒成立,从而能求出实数k的取值范围.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)由bn=3×(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n |
| n |
| 2 |
| n+2 |
| n2+4n+5 |
解答:
(Ⅰ)证明:对任意n∈N*,都有bn+1=
bn+
,
∴bn+1-
=
(bn-
),
∴{bn-
}成等比数列,
首项为b1-
=3,公比为
,
∴bn-
=3×(
)n-1,
∴bn=3×(
)n-1+
.
(Ⅱ)解:∵bn=3×(
)n-1+
,
∴Tn=3(1+
+
+…+
)+
=
+
=6(1-
)+
,
∵对任意n∈N*,不等式
≤n2+4n+5恒成立,
∴k≥
对任意n∈N*恒成立,
又
=
≤
,
∴k≥
.
| 1 |
| 2 |
| 1 |
| 4 |
∴bn+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴{bn-
| 1 |
| 2 |
首项为b1-
| 1 |
| 2 |
| 1 |
| 2 |
∴bn-
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=3×(
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)解:∵bn=3×(
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=3(1+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n |
| 2 |
=
3(1-
| ||
1-
|
| n |
| 2 |
=6(1-
| 1 |
| 2n |
| n |
| 2 |
∵对任意n∈N*,不等式
| 2Tn+3•22n-1-10 |
| k |
∴k≥
| n+2 |
| n2+4n+5 |
又
| n+2 |
| n2+4n+5 |
| 1 | ||
n+2+
|
| 10 |
| 3 |
∴k≥
| 3 |
| 10 |
点评:本题考查考查等比数列的证明,考查等比数列的通项公式的求法,考查实数的取值范围的求法,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关题目