题目内容
1.在平面直角坐标系中,定义:一条直线经过一个点(x,y),若x,y都是整数,就称该直线为完美直线,这个点叫直线的完美点,若一条直线上没有完美点,则就称它为遗憾直线.现有如下几个命题:①如果k,b都是无理数,那么直线y=kx+b一定是遗憾直线;
②“直线y=kx+b是完美直线”的充要条件是“k,b都是有理数”;
③存在恰有一个完美点的完美直线;
④完美直线l经过无穷多个完美点,当且仅当直线l经过两个不同的完美点.
其中正确的命题是( )
| A. | ②③ | B. | ②③④ | C. | ①③④ | D. | ③④ |
分析 ①②③可利用特殊法求解:如y=$\sqrt{2}$x-$\sqrt{2}$等;
④也可特殊处理使直线过原点,再证明即可.
解答 解:①②:如果k,b都是无理数,如y=$\sqrt{2}$x-$\sqrt{2}$,显然过(1,0),是完美直线,故①②错误;
③设直线方程为y=$\sqrt{2}$x,只经过了一个完美点(0,0),所以③正确;
④设y=kx为过原点的完美直线,若此直线过不同的完美点(x1,y1)和(x2,y2),把两点代入完美直线的方程得y1=kx1,y2=kx2,
两式相减得y1-y2=k(x1-x2),则(x1-x2,y1-y2)也在完美直线y=kx上,且(x1-x2,y1-y2)也为完美点,通过这种方法得到直线经过无穷多个完美点,所以④正确.
故答案为D.
点评 本题考查了新定义类型的题型,难点是对定义的认识和理解.
练习册系列答案
相关题目
11.某城市城镇化改革过程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的统计数据:
(Ⅰ)利用所给数据求年居民生活用水量与年份之间的回归直线方程y=bx+a;
(Ⅱ)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预计该城市2023年的居民生活用水量.
参考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}},a=\overline y-b\overline x$.
| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 居民生活用水量(万吨) | 236 | 246 | 257 | 276 | 286 |
(Ⅱ)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预计该城市2023年的居民生活用水量.
参考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}},a=\overline y-b\overline x$.
13.抛物线C:y2=4x的焦点为F,斜率为k的直线l与抛物线C交于M,N两点,若线段MN的垂直平分线与x轴交点的横坐标为a(a>0),n=|MF|+|NF|,则2a-n等于( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
11.已知直线l的一般方程式为x+y+1=0,则l的一个方向向量为( )
| A. | (1,1) | B. | (1,-1) | C. | (1,2) | D. | (1,-2) |