ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖª$\overrightarrow a$=£¨1£¬2£©£¬$\overrightarrow b$=£¨4£¬2£©£¬$\overrightarrow c$=m$\overrightarrow a$+$\overrightarrow b$£¨m¡ÊR£©£¬ÇÒ$\overrightarrow c$Óë$\overrightarrow a$µÄ¼Ð½ÇµÈÓÚ$\overrightarrow c$Óë$\overrightarrow b$µÄ¼Ð½Ç£¬Ôòm=2£®·ÖÎö ¸ù¾Ý¼Ð½ÇÏàµÈÁгö·½³Ì½â³öm£®
½â´ð ½â£º$\overrightarrow{c}$=£¨m+4£¬2m+2£©.$\overrightarrow{a}•\overrightarrow{c}$=m+4+2£¨2m+2£©=5m+8£¬$\overrightarrow{b}•\overrightarrow{c}$=4£¨m+4£©+2£¨2m+2£©=8m+20£®
|$\overrightarrow{a}$|=$\sqrt{5}$£¬|$\overrightarrow{b}$|=$\sqrt{20}$=2$\sqrt{5}$£¬
¡ß$\overrightarrow c$Óë$\overrightarrow a$µÄ¼Ð½ÇµÈÓÚ$\overrightarrow c$Óë$\overrightarrow b$µÄ¼Ð½Ç£¬
¡à$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}|•|\overrightarrow{c}|}$=$\frac{\overrightarrow{b}•\overrightarrow{c}}{|\overrightarrow{b}|•|\overrightarrow{c}|}$£¬¡à$\frac{5m+8}{\sqrt{5}}$=$\frac{8m+20}{2\sqrt{5}}$£¬½âµÃm=2£®
¹Ê´ð°¸Îª£º2£®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄ¼Ð½Ç¹«Ê½£¬ÊýÁ¿»ýÔËË㣬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
17£®Èçͼ£¬ÈôÏÂÁгÌÐòÖ´ÐеĽá¹ûÊÇ2£¬ÔòÊäÈëµÄxÖµÊÇ£¨¡¡¡¡£©

| A£® | 2 | B£® | -2 | C£® | 2»ò-2 | D£® | 0 |
14£®$\root{3}{£¨lg5-1£©^{3}}$-$\sqrt{£¨lg2-1£©^{2}}$=£¨¡¡¡¡£©
| A£® | lg$\frac{2}{5}$ | B£® | 1 | C£® | -1 | D£® | lg$\frac{5}{2}$ |
1£®½«º¯Êýy=sinxµÄͼÏóÏò×óÆ½ÒÆ¦Õ£¨0¡Ü¦Õ¡Ü2¦Ð£©¸öµ¥Î»ºó£¬µÃµ½º¯Êý$y=sin£¨x-\frac{¦Ð}{6}£©$µÄͼÏó£¬Ôò¦Õ=£¨¡¡¡¡£©
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{5¦Ð}{6}$ | C£® | $\frac{7¦Ð}{6}$ | D£® | $\frac{11¦Ð}{6}$ |
11£®º¯Êýy=2sin2xµÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»ºóµÃµ½µÄͼÏó½âÎöʽÊÇ£¨¡¡¡¡£©
| A£® | $y=2sin£¨2x+\frac{¦Ð}{6}£©$ | B£® | $y=2sin£¨2x-\frac{¦Ð}{6}£©$ | C£® | $y=2sin£¨2x-\frac{¦Ð}{3}£©$ | D£® | $y=2sin£¨2x+\frac{¦Ð}{3}£©$ |
15£®ÃüÌâ¡°Èôx£¼3£¬Ôòx2¡Ü9¡±µÄÄæ·ñÃüÌâÊÇ£¨¡¡¡¡£©
| A£® | Èôx¡Ý3£¬Ôòx2£¾9 | B£® | Èôx2¡Ü9£¬Ôòx£¼3 | C£® | Èôx2£¾9£¬Ôòx¡Ý3 | D£® | Èôx2¡Ý9£¬Ôòx£¾3 |
16£®ÈçͼËùʾ¿Õ¼äÖ±½Ç×ø±êϵÖУ¬ÓÒÊÖ¿Õ¼äÖ±½Ç×ø±êϵµÄ¸öÊýΪ£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |