题目内容

18.设正三棱锥A-BCD的所有顶点都在球O的球面上,BC=1,E、F分别是AB,BC的中点,EF⊥DE,则球O的半径为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{10}}{4}$

分析 根据EF与DE的垂直关系,结合正棱锥的性质,判断三条侧棱互相垂直,再求得侧棱长,根据体积公式计算即可

解答 解∵E、F分别是AB、BC的中点,∴EF∥AC,又∵EF⊥DE,
∴AC⊥DE,
取BD的中点O,连接AO、CO,∵三棱锥A-BCD为正三棱锥,
∴AO⊥BD,CO⊥BD,∴BD⊥平面AOC,又AC?平面AOC,∴AC⊥BD,
又DE∩BD=D,∴AC⊥平面ABD;
∴AC⊥AB,
设AC=AB=AD=x,则x2+x2=1⇒x=$\frac{\sqrt{2}}{2}$;
所以三棱锥对应的长方体的对角线为$\sqrt{3(\frac{\sqrt{2}}{2})^{2}}=\frac{\sqrt{6}}{2}$,
所以它的外接球半径为$\frac{\sqrt{6}}{4}$;
故选:B.

点评 本题考查了正三棱锥的外接球半径求法,关键是求出三棱锥的三条侧棱长度,得到对应的长方体对角线,即外接球的直径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网