题目内容
9.已知数列{an}是等差数列,{bn}是等比数列,若a1=2且数列{anbn}的前n项和是(2n+1)•3n-1,则数列{an}的通项公式是an=n+1.分析 根据当n=1时,求得b1=4,写出Tn=(2n+1)•3n-1,Tn-1=(2n-1)•3n-1-1,两式相减求得:
anbn=4(n+1)•3n-1,得到bn=4•3n-1,an=n+1.
解答 解:{anbn}的前n项和Tn=(2n+1)•3n-1,
{bn}是等比数列,公比为q,数列{an}是等差数列,首项a1=2,公差为d,
a1=2,a1b1=3•3-1,b1=4,
∵a1b1+a2b2+a3b3+…+anbn=(2n+1)•3n-1,
a1b1+a2b2+a3b3+…+an-1bn-1=(2n-1)•3n-1-1,
两式相减得:anbn=4(n+1)•3n-1,
∴bn=4•3n-1,an=n+1,
故答案为:an=n+1.
点评 本题考查求等差数列的通项公式,属于中档题.
练习册系列答案
相关题目
18.设正三棱锥A-BCD的所有顶点都在球O的球面上,BC=1,E、F分别是AB,BC的中点,EF⊥DE,则球O的半径为( )
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{4}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{10}}{4}$ |
19.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{4x-y+1≥0}\end{array}\right.$则目标函数z=$\frac{y+1}{x+3}$的最大值为( )
| A. | $\frac{1}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | 2 |