题目内容

3.已知数列{an}的通项公式an=5-n,其前n项和为Sn,将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*,总有Sn<Tn+λ恒成立,则实数λ的取值范围是(  )
A.λ≥2B.λ>3C.λ≥3D.λ>2

分析 通过an=5-n可求出Tn=8(1-$\frac{1}{{2}^{n}}$)、Sn=$\frac{n(9-n)}{2}$,利用4≤Tn<8及Sn≤10,结合题意可知10<8+λ,进而计算可得结论.

解答 解:∵an=5-n,
∴a1=4,a2=3,a3=2,a4=1,
则b1=a1=4,b2=a3=2,b3=a4=1,
∴数列{bn}是首项为4、公比为$\frac{1}{2}$的等比数列,
∴Tn=$\frac{4(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=8(1-$\frac{1}{{2}^{n}}$),
∴4≤Tn<8,
又∵Sn=$\frac{n(4+5-n)}{2}$=$\frac{n(9-n)}{2}$,
∴当n=4或n=5时,Sn取最大值10,
∵存在m∈N*,使对任意n∈N*,总有Sn<Tn+λ恒成立,
∴10<8+λ,即λ>2,
故选:D.

点评 本题考查数列的通项及前n项和,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网