题目内容
12.已知数列{an}通项an=2n-1,且数列{$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$}的前m项和为5,则m=60.分析 由题意运用分母有理化,可得$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$=$\frac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$=$\frac{1}{2}$($\sqrt{2n+1}$-$\sqrt{2n-1}$),再由数列的求和方法:裂项相消求和,解方程可得m的值.
解答 解:数列{an}通项an=2n-1,
则$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$=$\frac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$=$\frac{1}{2}$($\sqrt{2n+1}$-$\sqrt{2n-1}$),
数列{$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$}的前m项和为$\frac{1}{2}$($\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+…+$\sqrt{2m+1}$-$\sqrt{2m-1}$)
=$\frac{1}{2}$($\sqrt{2m+1}$-1)=5,
解得m=60,
故答案为:60.
点评 本题考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
17.设f(x)=10x+lgx,则f′(1)等于( )
| A. | 10 | B. | 10ln10+$\frac{1}{ln10}$ | C. | $\frac{10}{ln10}$+ln10 | D. | 11ln10 |
3.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是( )
| A. | [$\frac{1}{2}$,1) | B. | [$\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}$] | C. | [$\frac{\sqrt{2}}{2}$,1] | D. | [$\frac{\sqrt{3}}{2}$,1) |
17.直线$\frac{x}{5}$+$\frac{y}{2}$=1和坐标轴所围成的三角形的面积是( )
| A. | 2 | B. | 5 | C. | 7 | D. | 10 |