题目内容
2.观察下面的算式:23=3+5
33=7+9+11
43=13+15+17+19
…,
根据以上规律,把m3(m∈N*且m≥2)写成这种和式形式,则和式中最大的数为m2-m+1.
分析 根据23=3+5,33=7+9+11,43=13+15+17+19,可知从23起,m3的分解规律恰为数列3,5,7,9,若干连续项之和,23为前两项和,33为接下来三项和,故m3的首数为m2-m+1.
解答 解:根据23=3+5,
33=7+9+11,
43=13+15+17+19,
从23起,m3的分解规律恰为数列3,5,7,9,若干连续项之和,23为前两项和,33为接下来三项和,
故m3的首数为m2-m+1,
故答案为:m2-m+1
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关题目
12.在空间四边形ABCD中,$\overrightarrow{DA}=\overrightarrow a,\overrightarrow{DB}=\overrightarrow b,\overrightarrow{DC}=\overrightarrow c$,P在线段AD上,且DP=2PA,Q为BC的中点,则$\overrightarrow{PQ}$=( )
| A. | $\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$ | B. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{2}{3}\overrightarrow c$ | C. | $\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$ | D. | $-\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$ |