题目内容

19.已知函数f(x)=Asin(wx+φ)+B(A>0,w>),|φ|<$\frac{π}{2}$) 的部分图象如图所示:
(1)求f(x)的解析式和对称中心坐标;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数g(x)的图象,求函数y=g(x)在x∈[0,$\frac{7π}{6}$]上的最大值和最小值.

分析 (1)由图象可求A,B,T,利用周期公式可得ω,由图象及五点法作图可求φ,即可得解f(x)的函数解析式,令2x+$\frac{π}{3}$=kπ,k∈Z,解得f(x)的对称中心的坐标.
(2)由已知的图象变换过程可得g(x)=2sin(x+$\frac{2π}{3}$),结合x的范围,可求x+$\frac{2π}{3}$∈[$\frac{2π}{3}$,$\frac{11π}{6}$],利用正弦函数的图象和性质即可计算得解.

解答 (本题满分为12分)
解:(1)由图象可知$\left\{\begin{array}{l}{A+B=1}\\{-A+B=-3}\end{array}\right.$,可得:A=2,B=-1,…(2分)
又由于$\frac{T}{2}$=$\frac{7π}{12}-\frac{π}{12}$,可得:T=π,
所以$ω=\frac{2π}{T}$=2,…(3分)
由图象及五点法作图可知:2×$\frac{π}{12}$+φ=$\frac{π}{2}$,
所以φ=$\frac{π}{3}$,
所以f(x)=2sin(2x+$\frac{π}{3}$)-1.…(4分)
令2x+$\frac{π}{3}$=kπ,k∈Z,得x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
所以f(x)的对称中心的坐标为($\frac{kπ}{2}$-$\frac{π}{6}$,-1),k∈Z.…(6分)
(2)由已知的图象变换过程可得:g(x)=2sin(x+$\frac{2π}{3}$),…(8分)
因为x∈[0,$\frac{7π}{6}$],所以x+$\frac{2π}{3}$∈[$\frac{2π}{3}$,$\frac{11π}{6}$],…(10分)
所以当x+$\frac{2π}{3}$=$\frac{3π}{2}$,得x=$\frac{5π}{6}$时,g(x)取得最小值g($\frac{5π}{6}$)=-2,…(11分)
当x+$\frac{2π}{3}$=$\frac{2π}{3}$,即x=0时,g(x)取得最大值g(0)=$\sqrt{3}$.…(12分)

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数平移变换的规律,考查了正弦函数的图象和性质的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网