ÌâÄ¿ÄÚÈÝ
11£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±ÏßLµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3-tcos\frac{3¦Ð}{4}}\\{y=\sqrt{5}+tsin\frac{3¦Ð}{4}}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÔÚÒÔÔµã OΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êÖУ¬Ô²CµÄ·½³ÌΪ$¦Ñ=2\sqrt{5}sin¦È$£®£¨¢ñ£©Ð´³öÖ±ÏßLµÄÇãб½Ç¦ÁºÍÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Èôµã P×ø±êΪ$£¨{3£¬\sqrt{5}}£©$£¬Ô²CÓëÖ±ÏßL½»ÓÚ A£¬BÁ½µã£¬Çó|PA|•|PB|µÄÖµ£®
·ÖÎö £¨¢ñ£©Ö±ÏßLµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3-tcos\frac{3¦Ð}{4}}\\{y=\sqrt{5}+tsin\frac{3¦Ð}{4}}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÏûÈ¥²ÎÊýt¿ÉµÃ£ºÖ±ÏßLµÄÆÕͨ·½³Ì£¬ÀûÓÃбÂÊÓëÇãб½ÇµÄ¹ØÏµ¿ÉµÃ¦Á£®Ô²CµÄ·½³ÌΪ$¦Ñ=2\sqrt{5}sin¦È$£¬¼´ ¦Ñ2=2$\sqrt{5}$¦Ñsin¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©°ÑÖ±ÏßLµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬µÃt2+3$\sqrt{2}$t+4=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢²ÎÊýµÄÒâÒå¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨¢ñ£©Ö±ÏßLµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3-tcos\frac{3¦Ð}{4}}\\{y=\sqrt{5}+tsin\frac{3¦Ð}{4}}\end{array}\right.$£¨tΪ²ÎÊý£©£®
ÏûÈ¥²ÎÊýt¿ÉµÃ£ºÖ±ÏßLµÄÆÕͨ·½³ÌΪx+y-3+$\sqrt{5}$=0£¬
Ôòtan¦Á=-1£¬
¡à¦Á=$\frac{¦Ð}{4}$£®
Ô²CµÄ·½³ÌΪ$¦Ñ=2\sqrt{5}sin¦È$£¬¼´ ¦Ñ2=2$\sqrt{5}$¦Ñsin¦È£¬
ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÖ±½Ç×ø±ê·½³ÌΪx2+£¨y-$\sqrt{5}$£©2=5£®
£¨¢ò£©°ÑÖ±ÏßLµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬
µÃt2+3$\sqrt{2}$t+4=0£¬
Éèt1£¬t2ÊÇÉÏÊö·½³ÌµÄÁ½ÊµÊý¸ù£¬
ÓÖÖ±ÏßL¹ýµãP£¨3£¬$\sqrt{5}$£©£¬A¡¢BÁ½µã¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬
ËùÒÔ|PA|•|PB|=4£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¼°ÆäÒâÒå¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 30¡ã | B£® | 45¡ã | C£® | 60¡ã | D£® | 120¡ã |
¢Ùa£¾e£»¢Úx1+x2£¾2£»¢Ûx1x2£¾1£»¢Üº¯Êýf£¨x£©Óм«Ð¡Öµµãx0£¬x1+x2£¼2x0£®
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
| A£® | ¹²Ãæ | B£® | ƽÐÐ | C£® | ÒìÃæ | D£® | ƽÐлòÒìÃæ |
| A£® | $\frac{4}{5}$ | B£® | $\frac{3}{5}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{1}{2}$ |