题目内容
5.在△ABC中,角A,B,C的对边分别为a,b,c.已知$({a+b+c})({sinA+sinB-sinC})=({2+\sqrt{3}})asinB$.(1)求角C的大小;
(2)若b=8,c=5,求△ABC的面积.
分析 (1)正弦定理和余弦定理,即可求出角C的大小;
(2)由b=8,c=5,a2+b2-c2=$\sqrt{3}$ab,求出a的值,再求△ABC的面积.
解答 解:(1)△ABC中,$({a+b+c})({sinA+sinB-sinC})=({2+\sqrt{3}})asinB$,
由正弦定理得,(a+b+c)(a+b-c)=(2+$\sqrt{3}$)ab,
整理得,a2+b2-c2=$\sqrt{3}$ab,
由余弦定理得,cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{\sqrt{3}ab}{2ab}$=$\frac{\sqrt{3}}{2}$,
又C∈(0,π),
∴C=$\frac{π}{6}$;
(2)由b=8,c=5,a2+b2-c2=$\sqrt{3}$ab,
解得a=4$\sqrt{3}$+3或a=4$\sqrt{3}$-3;
当a=4$\sqrt{3}$-3时,S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$(4$\sqrt{3}$-3)×8×$\frac{1}{2}$=8$\sqrt{3}$-6,
当a=4$\sqrt{3}$+3时,S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$(4$\sqrt{3}$+3)×8×$\frac{1}{2}$=8$\sqrt{3}$+6.
综上,△ABC的面积为8$\sqrt{3}$-6或8$\sqrt{3}$+6.
点评 本题考查了正弦、余弦定理和三角形的面积计算问题,是中档题.
练习册系列答案
相关题目
15.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P(ξ=1)=$\frac{16}{45}$,且该产品的次品率不超过40%,则这10件产品的次品率为( )
| A. | 10% | B. | 20% | C. | 30% | D. | 40% |
16.下列函数中,满足“f(xy)=f(x)+f(y)”的单调递增函数是( )
| A. | f(x)=log${\;}_{\frac{1}{2}}$x | B. | f(x)=x3 | C. | f(x)=2x | D. | f(x)=log2x |
10.
如图,在正方体ABCD-A1B1C1D1中,M为BB1的中点,则直线MC与平面ACD1所成角的正弦值为( )
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\frac{{\sqrt{15}}}{5}$ | D. | $\frac{{\sqrt{3}}}{5}$ |