题目内容

5.函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数,设f(x)在[0,1]为非减函数,且满足以下三个条件;①f(0)=0;②f($\frac{x}{3}$)=$\frac{1}{2}$f(x);③f(1-x)=1-f(x),则f($\frac{1}{3}$)+f($\frac{1}{8}$)等于(  )
A.$\frac{1}{128}$B.$\frac{1}{256}$C.$\frac{1}{512}$D.$\frac{3}{4}$

分析 由已知函数f(x)满足的三个条件求出f(1),f($\frac{1}{2}$),f($\frac{1}{3}$),进而求出f($\frac{1}{9}$),f($\frac{1}{6}$)的函数值,又由函数f(x)为非减函数,求出f($\frac{1}{8}$)的值,即可得到f($\frac{1}{3}$)+f($\frac{1}{8}$)的值.

解答 解:∵函数f(x)在[0,1]上为非减函数,①f(0)=0;③f(1-x)+f(x)=1,∴f(1)=1,
令x=$\frac{1}{2}$,所以有f($\frac{1}{2}$)=$\frac{1}{2}$.
又∵②f($\frac{x}{3}$)=$\frac{1}{2}$f(x),∴f(x)=2f($\frac{x}{3}$),∴令=1,可得1=2f($\frac{1}{3}$),∴f($\frac{1}{3}$)=$\frac{1}{2}$.
令x=$\frac{1}{2}$,可得f($\frac{1}{6}$)=$\frac{1}{2}$f($\frac{1}{2}$)=$\frac{1}{4}$,令x=$\frac{1}{3}$,可得f($\frac{1}{9}$)=$\frac{1}{2}$f($\frac{1}{3}$)=$\frac{1}{4}$.
∵当x1<x2时都有f(x1)≤f(x2),$\frac{1}{9}$<$\frac{1}{8}$<$\frac{1}{6}$,∴f($\frac{1}{9}$)≤f($\frac{1}{8}$)≤f($\frac{1}{6}$ ),∴f($\frac{1}{8}$)=$\frac{1}{4}$,
∴f($\frac{1}{3}$)+f($\frac{1}{8}$)=$\frac{1}{2}$+$\frac{1}{4}$=$\frac{3}{4}$,
故选:D.

点评 本题主要考查抽象函数、新定义的应用,充分利用题意中非减函数性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网