题目内容

4.已知平面四边形ABCD为凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧),且AB=2,BC=4,CD=5,DA=3,则平面四边形ABCD面积的最大值为2$\sqrt{30}$.

分析 在△ABC和△ACD中使用余弦定理求出cosB,cosD的关系,得出四边形的面积S关于sinB,sinD的函数表达式,利用余弦函数的性质求出S的最大值.

解答 解:设AC=x,在△ABC中,由余弦定理得:x2=22+42-2×2×4cosB=20-16cosB,
同理,在△ADC中,由余弦定理得:x2=32+52-2×3×5cosD=34-30cosD,
∴15cosD-8cosB=7,①
又平面四边形ABCD面积为$S=\frac{1}{2}×2×4sinB+\frac{1}{2}×3×5sinD=\frac{1}{2}(8sinB+15sinD)$,
∴8sinB+15sinD=2S,②
2+②2得:64+225+240(sinBsinD-cosBcosD)=49+4S2
∴S2=60-60cos(B+D),
当B+D=π时,S取最大值$\sqrt{60+60}$=$2\sqrt{30}$.
故答案为:2$\sqrt{30}$.

点评 本题考查了余弦定理,三角形的面积公式,余弦函数的最值,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网