题目内容
12.已知点P(cos($\frac{π}{2}$+θ),sin($\frac{3π}{2}$-θ))在第三象限,则角θ所在的象限是( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由题意利用诱导公式,三角函数在各个象限中的符号,判断角θ所在的象限.
解答 解:∵点P(cos($\frac{π}{2}$+θ),sin($\frac{3π}{2}$-θ))在第三象限,则cos($\frac{π}{2}$+θ)=-sinθ<0,sin($\frac{3π}{2}$-θ)=-cosθ<0,
故有sinθ>0,cosθ>0,故角θ为第一象限角,
故选:A.
点评 本题主要考查诱导公式,三角函数在各个象限中的符号,属于基础题.
练习册系列答案
相关题目
17.$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则( )
| A. | $\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{a}$与$\overrightarrow{b}$方向相同 | B. | $\overrightarrow{a}$,$\overrightarrow{b}$是共线向量且方向相反 | ||
| C. | $\overrightarrow{a}$=$\overrightarrow{b}$ | D. | $\overrightarrow{a}$,$\overrightarrow{b}$无论什么关系均可 |