题目内容
已知3≤x≤6,
x≤y≤2x,则x+y的最大值和最小值分别是( )
| 1 |
| 3 |
| A、4,18 | B、4,8 |
| C、18,4 | D、8,4 |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=x+y的最小值.
解答:
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最小,此时z最小.
由
,解得
,即A(3,1),
代入目标函数z=x+y得z=3+1=4.
即目标函数z=x+y的最小值为4.
当直线y=-x+z经过点C时,
直线y=-x+z的截距最大,此时z最大.
由
,解得
,即C(6,12),
代入目标函数z=x+y得z=6+12=18.
即目标函数z=x+y的最大值为18.
故选:A.
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最小,此时z最小.
由
|
|
代入目标函数z=x+y得z=3+1=4.
即目标函数z=x+y的最小值为4.
当直线y=-x+z经过点C时,
直线y=-x+z的截距最大,此时z最大.
由
|
|
代入目标函数z=x+y得z=6+12=18.
即目标函数z=x+y的最大值为18.
故选:A.
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
已知函数f(x)=
sinωx+cosωx(ω>0)的图象与直线y=-2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是( )
| 3 |
A、[kπ+
| ||||
B、[kπ-
| ||||
C、[2kπ+
| ||||
D、[2kπ-
|
已知a+2b=2(a,b>0),则ab的最大值为( )
A、
| ||
| B、2 | ||
| C、3 | ||
D、
|
已知x与y之间的一组数据如表所示,则y与x的线性回归方程y=bx+a必过点( )
| x | 1 | 3 | 4 | 6 |
| y | 0 | 4 | 5 | 7 |
| A、(3.5,4) |
| B、(2,2) |
| C、(3.5,2) |
| D、(2,4) |
如图是函数f(x)=x3+ax2+bx+c的大致图象,则|x1-x2|=( )

A、
| ||||
B、
| ||||
C、
| ||||
D、
|
若直线xcosθ+ysinθ-1=0与圆(x-1)2+(y-sinθ)2=
相切,且θ为锐角,则该直线的倾斜角是( )
| 1 |
| 16 |
A、
| ||
B、
| ||
C、
| ||
D、
|
平面直角坐标系中,由不等式组
围成的区域的面积是( )
|
| A、6 | B、7 | C、8 | D、9 |