题目内容

已知函数f(x)=
2x+3
3x
,数列{an}满足a1=1,an+1=f(
1
an

(1)求数列{an}的通项公式;
(2)令bn=
1
anan+1
,求数列{bn}的前n项和Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)an+1=
2
an
+3
3
an
=
2+3an
3
=an+
2
3
,所以an+1-an=
2
3
,由此能求出an=
2
3
n+
1
3

(2)bn=
1
anan+1
=
9
2
(
1
2n+1
-
1
2n+3
)
,由此利用裂项求和法能求出数列{bn}的前n项和Tn
解答: 解:(1)∵f(x)=
2x+3
3x
,数列{an}满足a1=1,an+1=f(
1
an
),
an+1=
2
an
+3
3
an
=
2+3an
3
=an+
2
3

∴an+1-an=
2
3

∴数列{an}是以
2
3
为公差,首项a1=1的等差数列,
∴an=
2
3
n+
1
3

(2)bn=
1
anan+1
=
1
(
2
3
n+
1
3
)(
2
3
n+1)

=
9
(2n+1)(2n+3)
=
9
2
(
1
2n+1
-
1
2n+3
)

∴Tn=
9
2
(
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n+1
-
1
2n+3
)

=
9
2
(
1
3
-
1
2n+3
)
=
3
2
-
9
4n+6
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网